
www.manaraa.com

A Concurrent Logic Programming Model of theWebTechnical Report TR1998/1December, 1998
AbstractWe propose a concurrent logic programming model for the Web whichmaps Web page retrieval to logic programming processes and data streams.This gives us the leverage to address, in logic programming notation, Webconnectivity issues such as latency and unreliability, and to encode recov-ery/avoidance behaviours such as time-outs, rate monitoring, and repeat re-quests.We illustrate how this approach can be used to support the more abstractLogicWeb view of the Web as compositional logic programs. One bene�t ofthe underlying concurrency is that a `concurrent' LogicWeb can utilise AND-and OR- parallelism for search and other decision procedures.We describe the design and implementation of the main components ofour work. Examples are coded in Parlog, although most concurrent logicprogramming languages should be able to support this Web model.Authors:Andrew DavisonDepartment of Computer EngineeringPrince of Songkla UniversityHat Yai, Songkhla 90112, Thailandad@ratree.psu.ac.thSeng Wai LokeDepartment of Computer Science and Software EngineeringThe University of MelbourneParkville, Victoria 3052, Australiaswloke@cs.mu.oz.auhttp://www.cs.mu.oz.au/~swloke

1

www.manaraa.com

www.manaraa.com

A Concurrent Logic Programming Modelof the WebAndrew Davison Seng Wai LokeCSIM Dept. of Computer ScienceAsian Institute of Technology University of MelbournePathumthani 12120, Thailand Parkville, Victoria 3052, AustraliaE-mail: ad@cs.ait.ac.th E-mail: swloke@cs.mu.oz.auAbstractWe propose a concurrent logic programming model for the Web whichmaps Web page retrieval to logic programming processes and data streams.This gives us the leverage to address, in logic programming notation, Webconnectivity issues such as latency and unreliability, and to encode recov-ery/avoidance behaviours such as time-outs, rate monitoring, and repeatrequests.This approach can be used to support the more abstract LogicWebview of the Web as compositional logic programs. One bene�t of theunderlying concurrency is that a `concurrent' LogicWeb can utilise AND-and OR- parallelism for search and other decision procedures.We describe the design and implementation of the main componentsof our work. Examples are coded in Parlog, although most concurrentlogic programming languages should be able to support this Web model.1 IntroductionDi�erent programming models for the Web impose di�erent computational ab-stractions upon it: client-server, distributed objects, global hypertext, and soon. For example, our LogicWeb model considers the Web to be an open col-lection of logic programs which can be composed together to form new entities[10]. As with all abstractions, there are advantages and disadvantages. On theplus side is the high-level representation which emphasises structured data andlogical relationships. Ironically, this viewpoint can also be considered a disad-vantage since it hides the very real concerns of network latency, bandwidth, andthe Web's familiar unreliability.We propose a new model for the Web which represents the communicationbetween a client and a server as a stream of data passing between Logic Pro-gramming (LP) processes. Essentially, we are applying the concurrent LP com-putational paradigm to the Web, thereby allowing issues related to Web dataow to be captured at the program level. For example, it is possible to writecode that responds to di�erent kinds of download failure (e.g. server unavailabil-ity, network outage), and exhibits various retrieval behaviours (e.g. time-outs,1

www.manaraa.com

R1=2 R2=3

rand(5,R1)rand(4,R2)
consumerproducerFigure 1: Producer/Consumer Example.retries). In addition, the inherent concurrency of the formalism permits theimplementation of search techniques that employ AND- and OR- parallelism.This lower-level mapping of Web connectivity to LP processes and streamscan also be utilised as the basis of more abstract Web metaphors. In particular,we explain how a `concurrent' LogicWeb approach can be represented.In section 2, we consider some of the important notions of concurrent LP,and the details of a speci�c concurrent LP language, Parlog, which we usefor our examples. Section 3 introduces a new built-in, download/4. whichis the implementation cornerstone of our model. Section 4 uses download/4in Parlog to code various forms of parallel Web retrieval, time-out, and retrybehaviours. Section 5 discusses how LogicWeb can be supported with the helpof download/4. Section 6 examines related work, and section 7 concludes.The C code component of the download/4 implementation is given in theAppendix.2 Concurrent LPThe concurrent LP paradigm adds stream AND-parallelism, OR-parallelism,and don't care nondeterminism to logic programming. Arguably the resulthas little to do with the Herbrand view of computation, being more suited torepresenting processes and the data ows between them. Shapiro characterisesthe distinction as transformational systems (i.e. sequential LP) versus reactivesystems (i.e. concurrent LP) [13].Parlog is a typical concurrent LP language [4, 3] with some notable featuresfor making programs more succinct { namely, deep guards, sequential operators,and modes on predicate arguments. The following examples use Parlog but ourWeb model is suitable for all the concurrent LP family of languages.We will illustrate Parlog with a producer/consumer example. The producerprocess sends terms of the form rand(No,Res) to the consumer. No is an integersupplied by the producer, but Res will be bound by the consumer to a randominteger between 0 and No-1. This binding is transmitted `back' to the producerthrough uni�cation, thereby utilising it as a communication mechanism. Figure1 shows the con�guration of the two processes.The consumer is coded as:mode consumer(?).consumer([]).consumer([rand(No,Res)|InStream]) :-Res is random(No),consumer(InStream). 2

www.manaraa.com

The mode de�nition states that the consumer has one input argument (?).The argument is a list (employed here as an input stream) which triggers thesecond clause of consumer/1 as it is incrementally bound. The consumer bindsRes using the built-in random/1 and then recurses. When the list is terminated(i.e. the stream is closed), the process terminates by not recursing. The `,'operator in the second clause means AND-parallel conjunction, so allowing theconsumer to potentially process many input terms (messages) at once.The producer is coded as:mode producer(?, ^).producer(0, []).producer(No, [rand(No,Res)|OutStream]) :-No > 0 :No1 is No - 1,delay_write(Res),producer(No1, OutStream).mode delay_write(?).delay_write(Res) :-bound(Res) : write(Res) & nl.The producer is called with a positive integer as its �rst argument. Whenthe value is 0, the �rst clause closes the output list (output stream). The `^'in the mode declaration means that the second argument of producer/2 is foroutput.The second clause deals with the case when No is greater than 0 by checkingthe value in a guard test (the goal before the `:'). Only if the guard evaluatesto true is the clause chosen. The execution is committed to a clause once theguard has been evaluated, and so failure somewhere in the body will cause theentire program to fail.delay write/2 is called in AND-parallel with the recursive call to producer/2but will delay until its guard call evaluates to true. bound/1 only succeeds whenRes is bound and then its value is printed followed by a newline (`&' is sequentialconjunction).The process con�guration shown in Figure 1 is created with the query:?- producer(5, Str), consumer(Str).The shared variable Str sets up the stream link between the processes, and bothprocesses are started in AND-parallel due to the `,' conjunction. The producerwill send �ve messages to the consumer, and receive �ve replies.A common predicate for building more complex networks is merge/3:mode merge(?, ?, ^).merge([El|X], Y, [El|Z]) :-merge(X, Y, Z).merge(X, [El|Y], [El|Z]) :-merge(X, Y, Z).merge([], Y, Y).merge(X, [], X). 3

www.manaraa.com

merge consumer

producer

producer
Str1

Str

Str2Figure 2: Two Producers and One Consumer.
download/4

Stop

Result

Text

Request

Stream of data
(Web page)

(consumer)

Web Server

(producer)

request pageFigure 3: Downloading a Web Page.merge/3 combines two input streams (supplied as its �rst and second arguments)into a single output stream (its third argument). merge/3 could be utilised toconnect two producer processes to a consumer:?- producer(10, Str1), producer(20, Str2),merge(Str1, Str2, Str),consumer(Str).This con�guration is shown in Figure 2.merge/3 utilises don't care nondeterminism when it has messages pendingon both its input streams, since it can use either its �rst or second clause.merge/3 deals with producer termination with its third and fourth clauses.If one of the producers �nishes then the other producer's output stream is linkeddirectly to the consumer; in e�ect Figure 2 is recon�gured to look like Figure 1.The preceding description demonstrates how concurrent LP encourages pro-grams to be viewed as networks of processes connected by streams of data.Extensions of these basic techniques allow various other forms of interaction,such as one-to-many, broadcast, and blackboard-based communication.3 download/4Our model utilises the concurrent LP producer/consumer and stream viewpointto represent Web page retrievals. The `consumer' is encoded by a concurrent LPpredicate download/4, and the `producer' is the particular Web server. The cor-respondence is not entirely direct since the consumer initiates the contact withthe producer, but thereafter it receives the Web page as a stream of characters.The basic situation is shown in Figure 3.In Parlog, download/4's mode declaration would be:4

www.manaraa.com

mode download(Request?, Text^, Result^, Stop?).Parlog allows optional variable names to precede the `?' and `^' symbols.Request is a term representing the required HTTP protocol (e.g. GET,POST [1]) and the URL of the page. For example:req(get, 'http://www.cs.ait.ac.th/~ad')means retrieve Andrew Davison's home page.Text will output a stream of ASCII codes making up the retrieved page.Text may not be bound if there is an error during the request, or may returnonly part of the page if an error occurs during the download.Resultwill be bound to ok if the download �nishes successfully or err(Message),where Message can be a variety of error values.When Stop is bound by the user during a download, the retrieval will beterminated.download/4 can be more fully understood by considering the possible stepsin its evaluation, and the bindings that its arguments have during those steps.After Request is bound, download/4will attempt to open a connection withthe page's Web server. This may result in an error, and Result will be boundto an err/2 term. Several kinds of error are possible: the request's URL maynot be well-formed (err(bad url)), there was a problem with socket creation(err(socket)), DNS lookup of the server failed (err(dns)), or a connectioncould not be established with the server (err(connect)). After the particu-lar error has been output in Result, download/4 terminates. Alternatively,download/4 may successfully contact the server, and the Text output streamwill start being partially instantiated. This incremental instantiation mimicsthe character of the underlying network as data is read in chunks from theTCP/IP link to the server.Some time later, one of two possible events will occur: there will either bea break in the connection, causing the output stream to close (i.e. the list isterminated with []) and Result is bound to err(connection lost). Alterna-tively, the page wil be fully downloaded and the Text list will be terminatedwith [], but Result will be bound to ok.An important component of download/4 is the ability for another process(or the user) to bind its Stop variable to stop. This may occur at any timeafter the initial call, and breaks the network connection from the client's end.Our implementation makes a simplifying assumption that a Stop binding willonly occur after a link is established (i.e. after Text starts being bound). Whendownload/4 receives a Stop binding, the Text stream is closed and Result isbound to err(stopped).There are opportunities for race conditions when download/4 has to choosebetween a server-initiated termination (connection loss or download completion)and the client's stop request.3.1 Implementation OutlineOur prototype implementation is separated into two parts { the majority ofthe functionality is coded in C (in isdown.c), utilising the fork and signalfeatures of UNIX, and a thin layer coded in the concurrent LP language (indownload/4). We require that the language be able to spawn a UNIX process5

www.manaraa.com

kill

Stream of
page data

check_stop

sigusr1

Request
page

The Web

isdown.c

page
download

StopFile

Request
Stop

touch

isd

Result
Text

Page

characters
page

try to open

download/4

fork a child

set_stop
invokeFigure 4: Implementation Details.and incrementally read its output as an input stream. The implementation isillustrated in Figure 4.isdown.c is called with two command line arguments:isdown URL StopFileisdown forks a child process to download the page at the address URL (at themoment, the code only supports the HTTP GET protocol). Meanwhile, theparent process periodically attempts to open the �le called StopFile. If it eversucceeds, then the child process is killed, thereby stopping the download.During this time, if the child �nishes its retrieval, it terminates after sendinga signal to the parent. This signal informs the parent to stop trying to openStopFile, and to exit.As the child incrementally receives the Web page, the text is directed to stan-dard output. An error will cause the retrieval to stop, and the child passes on theerror by placing the string "#### error-no" onto standard output (error-nowill have a value between 1 and 6). We assume the string is su�ciently unique todistinguish it from the preceding Web page text. If the download is successfullycompleted then "#### 0" is appended to the output.The complete code for isdown.c appears in the Appendix.The concurrent LP part of the implementation begins with download/4:mode download(?, ^, ^, ?).download(req(get,URL), Text, Result, Stop) :-make_fnm(Fnm),isd(URL, Fnm, Text, Result),set_stop(Stop, Result, Fnm).It calls make fnm/1 to create a unique �lename, which is used by isd/4 andset stop/3 as the name of the stop �le. isd/4 invokes isdown.c and readsits output incrementally, while set stop/3 waits for either the Stop or Resultvariables to be bound.Details of isd/4: 6

www.manaraa.com

mode isd(?, ?, ^, ^).isd(URL, StopFile, Text, Result) :-concat_atom(['isdown ', URL, " ', StopFile], Cmd),open(pipe(Cmd), read, Str),get0(Str, Ch),get_chars(Str, Ch, Download),get_result(Download, Text, Result).mode get_chars(?, ?, ^).get_chars(_, -1, []).get_chars(Str, Ch, [Ch|Dld]) :-Ch \== -1 :get0(Str, NCh),get_chars(Str, NCh, Dld).mode get_result(?, ^, ^).get_result([35,35,35,35,32,Num|_], [], Result) :-ResNo is Num-48, % 35 = '#'; 48 = '0'num_mesg(ResNo, Result).get_result([Ch|Dld], [Ch|Text], Result) :-Ch \== 35 :get_result(Dld, Text, Result).mode num_mesg(?, ^).num_mesg(0, ok).num_mesg(1, err(socket)).num_mesg(2, err(dns)).num_mesg(3, err(connect)).num_mesg(4, err(bad_url)).num_mesg(5, err(stopped)).num_mesg(6, err(connection_lost)).isd/4 builds the isdown command string with the built-in concat atom/2 andinvokes it as a process using open/3. Unfortunately, this latter feature is notavailable in any concurrent LP language we examined, and so we were forced totest this code in SWI-Prolog, version 2.1.0 [14].get chars/3 incrementally reads in isdown's output and passes it toget result/3 which pulls o� the terminating result value and converts it to amore informative Result term.set stop/3 is:mode set_stop(?, ?, ?).set_stop(_, ok, _).set_stop(_, err(_), _).set_stop(stop, _, StopFile) :-concat_atom(['touch ', StopFile], Cmd),shell(Cmd).set stop/3 suspends until its �rst or second argument is bound. If its �rstargument is bound (which is the Stop variable) then it creates the stop �le. Ifits second argument is bound (which is the Result variable from isd/4) thenisd/4 has �nished and set stop/3 should also terminate.7

www.manaraa.com

4 Modelling Web InteractionsWe consider how download/4 can be used to build various Web interactionbehaviours.The AND-parallel download of two pages is:?- download(req(get,'http://www.cs.ait.ac.th/~ad'), T1, R1, _),download(req(get,'http://www.cs.mu.oz.au/~swloke'), T2, R2, _).Often it is useful to specify a download that tries several alternative sites(for example when searching). A predicate for OR-parallel search is:mode or_get(?, ^).or_get([URL|Ds], T) :-download(req(get,URL), Text, ok, _) : T=Text.or_get([_|Ds], T) :-or_get(Ds, Text) : T=Text.or get/2 uses an important feature of Parlog { the deep guard, which is a guardcontaining user-de�ned predicates. or get/2's behaviour is to call download/4in OR-parallel for each URL. When any one of the guarded downloads is suc-cessful then the other guard evaluations will be terminated automatically. Thiscoding technique can be rephrased using only AND-parallelism, which is neces-sary for languages with only at guards.An example call to or get/2 to try downloading Andrew Davison's pagefrom two di�erent sites:?- or_get(['http://fivedots.coe.psu.ac.th/~ad','http://www.cs.ait.ac.th/~ad'], Text).It is frequently useful to limit the amount of time that a download shouldtake, especially when the network is very loaded. This mechanism could be usedwith predicates like or get/2 to try alternative URLs if the current downloadis too slow.A de�nition for a retrieval predicate with a time-out facility:mode timeout(?, ?, ^, ^, ?).timeout(_Time, Request, Text, Result, Stop) :-download(Request, Text, Result, Stop) : true.timeout(Time, _, _, err(timeout), _) :-sleep(Time) : true.Deep guards are again utilised to set up an OR-parallel evaluation, this timeof download/4 and sleep/1 (a built-in which succeeds after suspending for aspeci�ed number of seconds). If the time-out expires before download/4 has�nished then download/4 is terminated and Result is bound to err(timeout).Web users do not give up easily, and will often reattempt a download if it failsthe �rst time (or even several times). repeat/5 repeatedly calls download/4up to a speci�ed number of times until the retrieval is successful or the limit isreached. 8

www.manaraa.com

mode repeat(?, ?, ^, ^, ?).repeat(Limit, Request, Text, Result, Stop) :-repeat1(0, Limit, Request, Text, Result, Stop).mode repeat1(?, ?, ?, ^, ^, ?).repeat1(Limit, Limit, _, _, err(limit), _).repeat1(Count, Limit, Request, Text, ok, Stop) :-Count < Limit,download(Request, Text, ok, Stop) : true;repeat1(Count, Limit, Request, Text, Result, Stop) :-Count < Limit :Count1 is Count + 1,repeat1(Count1, Limit, Request, Text, Result, Stop).repeat1/6 uses the sequential-OR operator (`;') between its second and thirdclauses so that the download is tried �rst. If nothing is obtained then the thirdclause recurses after incrementing the count argument.Another Web problem is dealing with slow downloads: a common behaviouris to `give up' on a retrieval when its arrival rate drops below some acceptablevalue, and then perhaps switch to another site.rate/5 monitors the arrival rate for a page and terminates the download ifthe speed drops below the speci�ed minimum.mode rate(?, ?, ^, ^, ?).rate(Minimum, Request, Text, Result, Stop) :-download(Request, Text, R1, S1),time(Time),rate_mon(Text, Minimum, Time, 0, R2, S2),combine(R1, S1, R2, S2, Result, Stop).mode rate_mon(?, ?, ?, ?, ^, ?).rate_mon([], _, _, _, done, _). % download donerate_mon(_, _, _, _, stopped, stop). % download stoppedrate_mon(Text, Min, Time, Len, R, S) :-calc_len(Text, Text1, Len, Len1),test_len(Text1, Min, Time, Len1, R, S).mode calc_len(?, ^, ?, ^).calc_len([], [], Len, Len). % end of textcalc_len(Var, Var, Len, Len) :- % current end of textvar(Var) : true.calc_len([Ch|Chs], Var, Len, Len2) :-Len1 is Len + 1,calc_len(Chs, Var, Len1, Len2).mode test_len(?, ?, ?, ?, ^, ?).test_len(_Text, Min, Time, Len, err(too_slow), _) :-time(NowTime),Rate is Len/(NowTime-Time),Rate < Min : true; % rate too slow9

www.manaraa.com

test_len(Text, Min, Time, Len, R, S) :-rate_mon(Text, Min, Time, Len, R, S).mode combine(R1?, S1^, R2?, S2^, Result^, Stop?).combine(_, S1, err(too_slow), _, Result, _) :- % rate errorS1 = stop, Result = err(too_slow).combine(R1, _, _, S2, Result, _) :- % download resultground(R1) :S2 = stop, Result = R1.combine(_, S1, _, S2, Result, stop) :- % stop from outsideS1 = stop, S2 = stop, Result = err(stopped).rate mon/6's usual behaviour is to calculate the arrival rate by callingcalc len/4 to get the length of the text already downloaded, and then usetest len/6 to check if the rate has dropped below the minimum permitted.However, rate mon/6 can also be terminated when the download has �nishedor been stopped.calc len/4 uses the fact that the retrieved text is represented as a partiallyinstantiated list ending in a variable or []. It recurses down to the current endof the list counting the characters it sees. This number is added to the previouslength of the text to obtain the current length.combine/6 is a standard predicate in concurrent LP programs for monitoringthe Stop and Result parameters of two processes (download/4 and rate mon/6in this case). If one of the processes produces a result then combine/6 stops theother process. It also passes the �nal result to rate/5 inside its Result output,and monitors rate/5's Stop variable.The underlying approach in our examples was to develop a new predicatefor each kind of interaction: timeout/5 for time-outs, repeat/5 for repeatedretries, rate/5 for data transfer rate measurement, and so on.It is easy to combine these interaction behaviours. For example, a predicateemploying rate monitoring and a time-out would essentially be the same asrate/5 but with a call to timeout/5 instead of download/4.5 Concurrent LogicWebAs mentioned above, LogicWeb views the Web as a collection of logic programswhich can be composed together using operators such as union, intersection,and encapsulation [10]. This programming style makes it much easier to imple-ment structured data representations on top of the Web, including light-weightdatabases and concept nets [7, 9]. The Web link mechanism can be augmentedwith logical relationships, which are useful when programming search enginesor Web guided tours [6, 8].One of the key components of LogicWeb is the context operator :lw(RequestMethod, URL)#>GoalThis executes Goal against the logic program speci�ed by the Web requestmethod and the URL. Low-level issues such as page retrieval, parsing, andconversion into logic program format are hidden. In addition, if the program10

www.manaraa.com

required by Goal is already present on the client-side (because it was previouslydownloaded) then it is not retrieved again.This abstraction away from network issues, such as latency, bandwidth, andconnection failure, is very useful for many kinds of program. However, it alsomakes some types of code harder to write. For example, search agents wouldoften like to be able to identify why a page cannot be retrieved.A #> goal can fail, so it is possible to distinguish download failure from goalfailure by executing:lw(RequestMethod, URL)#>true.but this still does not supply any information about the kind of download failure,such as a bad URL or connection loss.A more informative context operator can be implemented using download/4.The #> call becomes:lw(RequestMethod?, URL?, Store?, NewStore^, Result^)#>GoalStore is the LogicWeb program store which holds the programs which havebeen previously obtained. If a further download is required for the evaluationof Goal then the store will be extended with the new program, and output inNewStore. If no download is necessary, or the retrieval fails, then NewStoretakes on Store's value. Result returns download/4's result information.The reason for the Store/NewStore pair is the presence of AND-parallelism,which means that two (or more) #> goals could be evaluated concurrently, withthe resulting problem of reconciling concurrent changes to the program store.We have chosen to sequentialise the updates by requiring the store to be passedexplicitly between #> goals. Therefore, the parallel execution of goals in twodi�erent programs (pages) would be:?- lw(get,'http://www.cs.ait.ac.th/~ad',St, St1, R1)#>interests(AIs),lw(get,'http://www.cs.mu.oz.au/~swloke',St1, St2, R2)#>interests(SIs),intersect(AIs, SIs, Is).The query collects the interests from the two programs and calculates theirintersection. Since the two pages are independent, the two downloads couldbe carried out in AND-parallel, as the `,' conjunction speci�es. However, thesharing of the program store between the #> goals sequentialises them.The implementation of the concurrent context operator:mode #>(?, ?).lw(Method, URL, St, NSt, Result)#>Goal :-download_prog(req(Method,URL), St, NSt, Result),try_goal(Result, NSt, lw(Method,URL), Goal).mode download_prog(?, ?, ^, ^).download_prog(Request, St, St, ok) :-member(prog(Request,_), St) : true; % already in storedownload_prog(Request, St, NSt, Result) :-download(Request, Text, Result, _Stop), % stop not used11

www.manaraa.com

extract_prog(Result, Request, Text, St, NSt).mode extract_prog(?, ?, ?, ?, ^).extract_prog(err(_), _, _, St, St).extract_prog(ok, Request, Text, St, [prog(Request,Clauses)|St]) :-make_prog(Text, Clauses). % convert text into LP clausesmode try_goal(?, ?, ?, ?).try_goal(err(_), _, _, _).try_goal(ok, St, ProgID, Goal) :-demo(St, ProgID, Goal).The #> predicate tries to download the program required for Goal by usingdownload prog/4. If the retrieval is error-free then the goal is evaluated bydemo/3, otherwise the goal is ignored.download prog/4 starts by checking if the store already contains the neces-sary program by searching for the term prog(Request,). If it is present thena new download is unnecessary, otherwise one is carried out. If the retrievalis successful, extract prog/5 converts the resulting text into logic programclauses and stores them.One bene�t of coding #> explicitly is that it makes the design decisionsclearer. For instance, if a program has already been downloaded then it is neverretrieved again, and there is no way of stopping a #> download. Of course, thesedecisions can be modi�ed.5.1 Parallel SearchThe utilisation of the LogicWeb model in a concurrent LP framework meansthat parallel algorithms can be used to search and analyse Web pages.In the following example, we assume that the logic program generated for aWeb page contains the fact links/1, which holds a list of all the link anchorand URL pairs on the page:links([link(Anchor1,URL1), ...]).This di�ers from the sequential LogicWeb translation where each link anchorand URL pair is stored in its own fact. A list representation permits parallelsearch to be programmed more directly.search pages/4 uses deep guards to search in OR-parallel starting from agiven URL until a page is found which contains the speci�ed phrase. A typicalquery would be:?- search_pages('http://www.cs.ait.ac.th/~ad',Store, "Parlog", URL).Store holds the LogicWeb program store.search pages/4 is de�ned as:mode search_pages(?, ?, ?, ^).search_pages(URL, Store, Phrase, Address) :-relevant_page(URL, Store, Phrase) : Address = URL.search_pages(URL, Store, Phrase, Address) :-12

www.manaraa.com

lw(get, URL, Store, NStore, ok)#>links(Ls),visit_links(Ls, NStore, Phrase, A) : Address = A.mode relevant_page(?, ?, ?).relevant_page(URL, St, Phrase) :-lw(get, URL, St, _, ok)#>h_text(Text),contains(Text, Phrase).mode visit_links(?, ?, ?, ^).visit_links([link(_,URL)|_], St, Phrase, Addr) :-search_pages(URL, St, Phrase, A) : Addr = A.visit_links([_|Ls], St, Phrase, Addr) :-visit_links(Ls, St, Phrase, A) : Addr = A.relevant page/3 uses a call to h text/1, a predicate generated by Log-icWeb for every downloaded page to hold the text of that page. relevant page/3also uses the built-in contains/2 to check if Phrase is present in the page'stext.One useful feature of search pages/4 is that the updates to the programstore are not retained at the end of the search. Only the URL of the matchingpage is returned.A poor aspect of search pages/4 and its subsidiary predicates is the lackof loop checking { it is quite likely that many of the OR-parallel searches willrevisit pages already seen. This could be avoided by passing around a list ofvisited URLs but this would linearise the code to a large degree.5.2 Atomic Test-and-SetThe use of explicit store variables in the context operator cannot be avoided inParlog, but in more powerful concurrent LP languages there is an alternative.If the language possesses an atomic test-and-set primitive (e.g. as in FCP(j,:)and cc(j,#) [13, 12]) then the store (and its updates) can be hidden from theuser.The basic coding change is to represent the store as a partially instantiatedlist, ending in a variable. When a new program is added to the store, thevariable is atomically uni�ed with a list holding the program term and a newvariable.This technique requires a change to extract prog/5 which we previouslyused to update the store. In FCP(j,:) notation, it becomes:extract_prog(err(_), _, _, St).extract_prog(ok, Request, Text, St) <-make_prog(Text, Clauses),add_prog(prog(Request,Clauses), St).add_prog(Prog, Store) <-true : Store = [Prog|_] | true. % atomic test-and-setadd_prog(Prog, Store) <-Store = [_|Store1] | add_prog(Prog, Store1).add prog/2 tries to add prog(Request,Clauses) to the list, but will be unableto do so until it reaches its variable end. The actual assignment is achieved in13

www.manaraa.com

the �rst clause of add prog/2. It cannot be interleaved with another updateand so there is no danger of the modi�cation being corrupted. Consequently,it is unnecessary to return the modi�ed program store as an extra argument ofextract prog or #>. Indeed, the program store can be completely hidden fromthe programmer, as in the sequential version of LogicWeb. The resulting #>predicate is:lw(RequestMethod, URL, Result)#>GoalIf two #> goals try to update the store at the same time, one will update itbefore the other, but the order is unde�ned.5.3 Composition OperatorsHiding the program store simpli�es LogicWeb goals involving composition oper-ators. For instance, the following goal is written in a similar way to its sequentialcounterpart:(lw(get, URL1, _) + lw(get, URL2, _))#>Goal+ is LogicWeb union which forms the set-theoretic union of its arguments. Par-allelism can be exploited within the expression on the left hand side of #>: thepages URL1 and URL2 are downloaded concurrently.5.4 Web Interactions in LogicWeb GoalsIf the underlying concurrent language supports other behaviours, as typi�edby timeout/5 and rate/5, then these could also be made accessible at theLogicWeb level.One way of doing that is to extend the lw() term to include a user-speci�edlist of interaction parameters. These would be employed at the lower-level toset up and call the necessary predicates.For example, the following LogicWeb goal sets a time-out value of �ve sec-onds, a minimum data transfer rate of 100 KB/s, and permits up to threeretrieval attempts (at �ve second intervals) for downloading the page:lw(get, URL, inter([time(5), rate(100), atts(3)], Result))#>Goal6 Related WorkThe research by Cardelli and Davies on service combinators for Web computingis closely related to our proposal [2]. They describe a concurrent model withthe aim of reproducing human Web browsing behaviour, such as responses todownload failure or slow transmission rates. Their language contains constructsfor retrieving a page as a string, representing time-outs and repeating faileddownloads. Their approach is also used in the Web data accessing componentof WebL, an object-oriented scripting language [5].There are some important di�erences between the service combinator viewof the Web and our approach, the main one being that the combinator lan-guage contains no representation for the data stream between the client andserver. For example, Cardelli and Davies' download operator either returns a14

www.manaraa.com

complete page string or fails. Also their language does not supply a way for theprogrammer to access the failure type of a download or to stop a retrieval inmid-execution (possible with download/4 via the Result and Stop variables).The consequence of their design decisions is that it is much harder to use com-binators to build new behaviours based on an examination of the downloadingdata stream. For instance, we can implement rate-based monitoring, while thecombinator language must contain it as a prede�ned operator.The only concurrent LP language with explicit support for Web computationis W-ACE, a constraint-based language which borrows its parallel features fromACE [11]. Their paper discusses the use of AND- and OR- parallelism for agentsearch in general terms, but is more concerned with the representation of Webpages as structured terms.7 ConclusionWe have described a concurrent LP-based model of the Web which uses processesand data streams as an abstraction for Web connectivity. This is very useful foraddressing issues such as latency and recovery from di�erent types of failure.Our view of the Web can be readily utilised as a building block for morecomplex behaviours. In particular, we discussed two designs for a `concurrent'LogicWeb with di�erent context operators.We outlined the design and implementation of a download/4 predicate whichis the key element of our approach. It comprises a fairly simple UNIX-basedcomponent and a thin concurrent LP layer. Unfortunately, we were unable to�nd a language that could implement a `pipe reading' function for incrementallyreading the output stream of the UNIX process. We do not believe that addingsuch functionality would be onerous. We tested our approach using the pipefacilities in SWI-Prolog.References[1] T. Berners-Lee, R. Fielding, and H. Frystyk, HyperText Transfer Protocol(HTTP/1.0) Speci�cation, RFC 1945.[2] L. Cardelli and R. Davies, Service Combinators for Web Com-puting, SRC Research Report 148, Digital Systems ResearchCenter, Palo Alto, California, USA, June, 1997. Available atftp://gatekeeper.dec.com/pub/DEC/SRC/research-reports/abstracts/src-rr-148.html[3] K.L. Clark and S. Gregory, Parlog: Parallel Programming in Logic, ACMTOPLAS 8(1), 1986, 1{49.[4] S. Gregory, Parallel Logic Programming in Parlog, Addison-Wesley, 1987.[5] T. Kistler and H. Marais, WebL { A Programming Lan-guage for the Web SRC Research Report, Digital Systems Re-search Center, Palo Alto, California, USA, 1998. Available athttp://www.elsevier.nl/cas/tree/store/comnet/free/www7/1832/com1832.htm . 15

www.manaraa.com

[6] S.W. Loke, A. Davison, and L. Sterling, CiFi: An Intelligent Agent forCitation Finding on the World Wide Web, PRICAI'96: 4th Paci�c RimInt. Conf. on Arti�cial Intelligence, Cairns, Australia, August, 1996.[7] S.W. Loke, A. Davison, and L. Sterling, Lightweight Deductive Databaseson the World-Wide Web, Proc. of the 1st Workshop on Logic ProgrammingTools for Internet Applications, JICSLP'96, Bonn, Germany, September,91{106.[8] S.W. Loke and A. Davison, A Logic Programming Approach to GeneratingWeb-based Guided Tours, PAP'97: 5th Int. Conf. and Exhibition on ThePractical Application of Prolog, London, UK, April, 1997.[9] S.W. Loke and A. Davison, A Two-level World Wide Web Model with LogicProgramming Links, Second Int. Workshop on LP Tools for Internet Ap-plications, ICLP'97, Leuven, Belgium, 1997.[10] S.W. Loke and A. Davison, LogicWeb: Enhancing the Web with Logic Pro-gramming, The Journal of Logic Programming, 36, 1998, 195{240.[11] E. Pontelli and G. Gupta, W-ACE: A Logic Language for Intelligent In-ternet Programming, ICTAI'97, Proc. of the IEEE 9th Int. Conf. on Toolswith AI, 1997, 2{10.[12] V.A. Saraswat, Concurrent Constraint Programming Languages, Ph.D The-sis, Carnegie-Mellon Univ. 1988.[13] E. Shapiro,The Family of Concurrent Logic Programming Languages, ACMComputing Surveys, Vol. 21, No. 3, September 1989, 413{510.[14] J. Wielemaker, SWI-Prolog Reference Manual, Dept. of Social ScienceInformatics (SWI), Amsterdam, The Netherlands, 1998. Available atftp://swi.psy.uva.nl/pub/SWI-Prolog/.AppendixA complete listing of isdown.c, the C component of the download/4 predicate./* isdown.c *//* Andrew Davison, Nov. 1998 (ad@cs.ait.ac.th)Seng Wai Loke (swloke@cs.mu.oz.au)*//* Retrieve the text of a Web page using its URL, butthis is interrupted if the stop-file is foundto exist. The page is output to stdout and isfollowed by "#### result-code"Result codes:0 : page downloaded okay1 : socket creation failure2 : DNS lookup error3 : connection error4 : URL incorrectly formed5 : downloaded interrupted by user16

www.manaraa.com

6 : something wrong with input from socketUsage:isdown http://www.cs.ait.ac.th/~ad/index.html stopfnm*//* Compilation on SunOS:\gcc -o isdown isdown.c -lnsl -lsocket*/#include <stdio.h>#include <string.h>#include <sys/types.h>#include <sys/socket.h>#include <netinet/in.h>#include <netdb.h>#include <unistd.h> /* for read(), write(), close() */#include <sys/wait.h>#include <signal.h>#define SIZE 512 /* max length of a string */void extract_parts(char url[], char host[], char fnm[]);int open_socket(char *host);void send_GET(int sd, char *fnm);void show_reply(int sd);void show_result(int result);void check_stop(char *stopfile, pid_t pid, int sd);void child_done(int signo);int main(int argc, char *argv[]){ int sd;pid_t pid;char host[SIZE], fnm[SIZE];signal(SIGUSR1, child_done); /* child signals to parent */if (argc != 3) {fprintf(stderr, "Usage: isdown URL StopFile\n");exit(1);}extract_parts(argv[1], host, fnm);sd = open_socket(host);if ((pid = fork()) == 0) { /* child */send_GET(sd, fnm); /* get the page */show_reply(sd); /* print it to stdout */close(sd);kill(getppid(), SIGUSR1); /* tell the parent to exit */}else /* parent */while(1) { /* interrupted by child signal */check_stop(argv[2], pid, sd); /* stop the child? */17

www.manaraa.com

sleep(1);}return 0;}void extract_parts(char url[], char host[], char fnm[])/* url should be of the form:http://host[/fnm]host and fnm are extracted from url; fnm may be empty*/{ int i = 0, j, k;while ((url[i] != '\0') && (url[i] != '/'))i++;if (url[i] == '\0') {fprintf(stderr, "Illegal URL format\n");show_result(4); /* URL incorrectly formed error */exit(1);}i = i + 2; /* skip both '/'s */j = 0;while ((url[i] != '\0') && (url[i] != '/'))host[j++] = url[i++]; /* build host */host[j] = '\0';if (url[i] == '\0') /* no file part */fnm[0] = '\0';else {i++; /* skip the '/' */k = 0;while (url[i] != '\0')fnm[k++] = url[i++]; /* build fnm */fnm[k] = '\0';}}int open_socket(char *host)/* Create a socket. Assign host's details to name.Create a stream using name, and connect the socket to it.*/{ struct sockaddr_in name;struct hostent *hptr;int sd;if ((sd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {perror("socket");show_result(1); /* socket creation error */exit(1);}/* initialise the name struct to all zeros */18

www.manaraa.com

memset(&name, 0, sizeof(name));name.sin_family = AF_INET;name.sin_port = htons(80); /* host is a HTTP server */if ((hptr = gethostbyname(host)) == NULL) {perror("gethostbyname");show_result(2); /* DNS lookup error */exit(1);}/* copy the IP address of host into name */memcpy(&name.sin_addr.s_addr, hptr->h_addr, hptr->h_length);fprintf(stderr, "Trying to contact %s...\n", host);if (connect(sd, (struct sockaddr *) &name,sizeof(name)) < 0) {close(sd);perror("connect");show_result(3); /* connection error */exit(1);}return sd;}void send_GET(int sd, char *fnm)/* Send a GET request for fnm to the server */{ char request[SIZE];fprintf(stderr, "Sending a GET request...\n");sprintf(request, "GET /%s HTTP/1.0\n\n", fnm);write(sd, request, sizeof(request));}void show_reply(int sd)/* Print the reply to the GET request */{ char buf[SIZE];int res;fprintf(stderr, "Waiting for a response\n");while ((res = read(sd, buf, SIZE)) > 0) {write(1, buf, res); /* write to stdout *//* sleep(1); */ /* testing -- to slow download */}if (res < 0) /* read error */res = 6; /* socket read error result code */show_result(res);}void show_result(int result)/* Finish the output with the result code details */19

www.manaraa.com

{ char buf[SIZE];fprintf(stderr, "Download result: %d\n", result);sprintf(buf, "\n#### %d\n", result);write(1, buf, strlen(buf));}void check_stop(char *stopfile, pid_t pid, int sd)/* If stopfile exists (i.e. can be opened) then killthe child which is downloading the Web page.*/{ FILE *fp;if ((fp = fopen(stopfile, "r")) != NULL) {fprintf(stderr, "stop file detected\n");kill(pid, SIGKILL); /* kill child process */close(sd);fclose(fp);remove(stopfile);show_result(5); /* download interruption code */exit(1);}}void child_done(int signo)/* Executed when the child sends a SIGUSR1 signal to theparent to inform it that the page downloading hasfinished. This allows the parent to terminate as well.*/{ fprintf(stderr, "Child has finished\n");exit(0);}
20

