A Concurrent Logic Programming Model of the
Web

Technical Report TR1998/1
December, 1998

Abstract

We propose a concurrent logic programming model for the Web which
maps Web page retrieval to logic programming processes and data streams.
This gives us the leverage to address, in logic programming notation, Web
connectivity issues such as latency and unreliability, and to encode recov-
ery/avoidance behaviours such as time-outs, rate monitoring, and repeat re-
quests.

We illustrate how this approach can be used to support the more abstract
LogicWeb view of the Web as compositional logic programs. One benefit of
the underlying concurrency is that a ‘concurrent’ LogicWeb can utilise AND-
and OR- parallelism for search and other decision procedures.

We describe the design and implementation of the main components of
our work. Examples are coded in Parlog, although most concurrent logic
programming languages should be able to support this Web model.

Authors:

Andrew Davison

Department of Computer Engineering
Prince of Songkla University

Hat Yai, Songkhla 90112, Thailand
ad@ratree.psu.ac.th

Seng Wai Loke

Department of Computer Science and Software Engineering
The University of Melbourne

Parkville, Victoria 3052, Australia

swloke@cs.mu.oz.au

http://www.cs.mu.oz.au/ " swloke

www.manharaa.com

www.manharaa.com

o AJLb

A Concurrent Logic Programming Model

of the Web

Andrew Davison Seng Wai Loke
CSTM Dept. of Computer Science
Asian Institnte of Technology University of Melbourne
Pathumthani 12120, Thailand Parkville, Victoria 3052, Australia
F-mail: ad@cs.ait.ac.th F-mail: swloke@cs.mu.oz.au
Abstract

We propose a concurrent logic programming model for the Web which
maps Web page retrieval to logic programming processes and data streams.
This gives us the leverage to address, in logic programming notation, Web
connectivity issues such as latency and unreliability, and to encode recov-
ery/avoidance behaviours such as time-outs, rate monitoring, and repeat
requests.

This approach can be used to support the more abstract T.ogicWeb
view of the Web as compositional logic programs. One benefit of the
underlying concurrency is that a ‘concurrent’ LogicWeb can utilise AND-
and OR- parallelism for search and other decision procedures.

We describe the design and implementation of the main components
of our work. Examples are coded in Parlog, althongh most concurrent
logic programming langnages shonld be able to snpport this Web model.

1 Introduction

Different programming models for the Web impose different computational ab-
stractions upon it: client-server, distributed objects, global hypertext, and so
on. For example, our LogicWeb model considers the Web to be an open col-
lection of logic programs which can be composed together to form new entities
[10]. As with all abstractions, there are advantages and disadvantages. On the
plus side is the high-level representation which emphasises structured data and
logical relationships. Tronically, this viewpoint can also be considered a disad-
vantage since it hides the very real concerns of network latency, bandwidth, and
the Web’s familiar unreliability.

We propose a new model for the Web which represents the communication
between a client and a server as a stream of data passing between Logic Pro-
gramming (L.P) processes. Essentially, we are applying the concurrent TP com-
putational paradigm to the Web, thereby allowing issues related to Web data
flow to be captured at the program level. For example, it is possible to write
code that responds to different kinds of download failure (e.g. server unavailabil-
ity, network outage), and exhibits various retrieval hehaviours (e.g. time-outs,

www.manaraa.com

rand(4,R2) rand(5,R1)
producer consumer
-

R1=2 R2=3

Figure 1: Producer/Consumer Example.

retries). Tn addition, the inherent concurrency of the formalism permits the
implementation of search techniques that employ AND- and OR- parallelism.

This lower-level mapping of Web connectivity to LLP processes and streams
can also be utilised as the basis of more abstract Web metaphors. In particular,
we explain how a ‘concurrent’ LogicWeb approach can be represented.

In section 2, we consider some of the important notions of concurrent P,
and the details of a specific concurrent LP language, Parlog, which we use
for our examples. Section 3 introduces a new built-in, download/4. which
is the 1mplementation cornerstone of our model. Section 4 uses download/4
in Parlog to code various forms of parallel Web retrieval, time-out, and retry
behaviours. Section b discusses how LogicWeb can be supported with the help
of download/4. Section 6 examines related work, and section 7 concludes.

The C code component, of the download/4 implementation is given in the
Appendix.

2 Concurrent LP

The concurrent LP paradigm adds stream AND-parallelism, OR-parallelism,
and don’t care nondeterminism to logic programming. Arguably the result
has little to do with the Herbrand view of computation, being more suited to
representing processes and the data flows between them. Shapiro characterises
the distinction as transformational systems (i.e. sequential L.P) versus reactive
systems (i.e. concurrent L.P) [13].

Parlog is a typical concurrent, I.P language [4, 3] with some notable features
for making programs more succinct namely, deep guards, sequential operators,
and modes on predicate arguments. The following examples use Parlog but our
Web model is suitable for all the concurrent P family of languages.

We will illustrate Parlog with a producer/consumer example. The producer
process sends terms of the form rand (No,Res) to the consumer. No is an integer
supplied by the producer, but Res will be bound by the consumer to a random
integer between 0 and No-1. This binding is transmitted ‘back’ to the producer
through unification, thereby utilising it as a communication mechanism. Figure
1 shows the configuration of the two processes.

The consumer is coded as:

mode consumer(?).

consumer ([]).

consumer ([rand(No,Res) | InStream]) :-—
Res is random(lo),
consumer (InStream) .

www.manaraa.com

The mode definition states that the consumer has one input argument (?).
The argument is a list (employed here as an input stream) which triggers the
second clause of consumer/1 as it 1s incrementally bound. The consumer binds
Res using the built-in random/1 and then recurses. When the list is terminated
(i.e. the stream is closed), the process terminates by not recursing. The
operator in the second clause means AND-parallel conjunction, so allowing the
consumer to potentially process many input terms (messages) at once.

The producer is coded as:

mode producer(?, ~).
producer(0, [1).
producer(No, [rand(No,Res)|OutStream]) :-
No > O
Nol is No - 1,
delay_write(Res),
producer(Nol, OutStream).

mode delay_write(?).
delay_write(Res) :-—
bound(Res) : write(Res) & nl.

The producer is called with a positive integer as its first argument. When
the value is 0, the first clause closes the output list (output stream). The <’
in the mode declaration means that the second argument of producer/2 is for
output.

The second clause deals with the case when No is greater than 0 by checking
the value in a guard test (the goal hefore the). Only if the guard evaluates
to true is the clause chosen. The execution 18 committed to a clause once the
guard has been evaluated, and so failure somewhere in the body will cause the
entire program to fail.

delay write/21s called in AND-parallel with the recursive call to producer/2
but will delay until its guard call evaluates to true. bound/1 only succeeds when
Res is bound and then its value is printed followed by a newline (‘&’ is sequential
conjunction).

The process configuration shown in Figure 1 is created with the query:

?- producer(5, Str), consumer(Str).

The shared variable Str sets up the stream link between the processes, and both

.7 conjunction. The producer

processes are started in AND-parallel due to the
will send five messages to the consumer, and receive five replies.

A common predicate for building more complex networks is merge/3:

mode merge(?, 7, 7).

merge([E1[X], ¥, [E11Z]) :-
merge(X, Y, Z).

merge(X, [E1|Y], [E11Z]) :-
merge(X, Y, Z).

merge([1, Y, Y).

merge(X, [1, X).

www.manaraa.com

consumer

Figure 2: Two Producers and One Consumer.

Text

request page
—_—

= download/a Web Server
Result
Stream of data
Web page)
Stop (consumer) ¢ Page) (producer)

Figure 3: Downloading a Web Page.

merge/3 combines two input streams (supplied as its first and second arguments)
into a single output stream (its third argument). merge/3 could be utilised to
connect two producer processes to a consumer:

?- producer (10, Stril), producer(20, Str2),
merge(Stri, Str2, Str),
consumer (Str).

This configuration is shown in Figure 2.
merge/3 utilises don’t care nondeterminism when it has messages pending
on both 1ts input streams, since it can use either its first or second clause.
merge/3 deals with producer termination with its third and fourth clauses.
If one of the producers finishes then the other producer’s output stream is linked
directly to the consumer; in effect Figure 2 18 reconfigured to look like Figure 1.

The preceding description demonstrates how concurrent I.P encourages pro-
grams to be viewed as networks of processes connected by streams of data.
Extensions of these basic techniques allow various other forms of interaction,
such as one-to-many, broadcast, and blackboard-based communication.

3 download/4

Our model utilises the concurrent L.P producer/consumer and stream viewpoint
to represent, Web page retrievals. The ‘consumer’ is encoded by a concurrent I.P
predicate download/4, and the ‘producer’ is the particular Web server. The cor-
respondence is not entirely direct since the consumer initiates the contact with
the producer, but thereafter it receives the Web page as a stream of characters.
The basic situation is shown in Figure 3.

In Parlog, download/4’s mode declaration would be:

www.manaraa.com

mode download(Request?, Text™, Result~, Stop?).

Parlog allows optional variable names to precede the ‘77 and °°’ symbols.
Request is a term representing the required HTTP protocol (e.g. GET,
POST [1]) and the URL of the page. For example:

req(get, ’http://www.cs.ait.ac.th/"ad’)

means retrieve Andrew Davison’s home page.

Text will output a stream of ASCII codes making up the retrieved page.
Text may not be bound if there is an error during the request, or may return
only part of the page if an error occurs during the download.

Result will be bound to ok if the download finishes successfully or err(Message),
where Message can be a variety of error values.

When Stop is bound by the user during a download, the retrieval will be
terminated.

download/4 can be more fully understood by considering the possible steps
in its evaluation, and the bindings that 1ts arguments have during those steps.

After Request is bound, download/4 will attempt to open a connection with
the page’s Web server. This may result in an error, and Result will be bound
to an err/2 term. Several kinds of error are possible: the request’s URI, may
not be well-formed (err(bad_url))7 there was a problem with socket creation
(err(socket)), DNS lookup of the server failed (err(dns)), or a connection
could not be established with the server (err(connect)). After the particu-
lar error has been output in Result, download/4 terminates. Alternatively,
download/4 may successfully contact the server, and the Text output stream
will start being partially instantiated. This incremental instantiation mimics
the character of the underlying network as data is read in chunks from the
TCP/TP link to the server.

Some time later, one of two possible events will occur: there will either be
a break in the connection, causing the output stream to close (i.e. the list is
terminated with []) and Result is bound to err(connection_lost). Alterna-
tively, the page wil be fully downloaded and the Text list will be terminated
with [1, but Result will be bound to ok.

An important component of download/4 is the ability for another process
(or the user) to hind its Stop variable to stop. This may occur at any time
after the initial call, and breaks the network connection from the client’s end.
Our implementation makes a simplifying assumption that a Stop binding will
only occur after a link is established (i.e. after Text starts heing hound). When
download/4 receives a Stop binding, the Text stream 1s closed and Result is
bound to err(stopped).

There are opportunities for race conditions when download/4 has to choose
between a server-initiated termination (connection loss or download completion)
and the client’s stop request.

3.1 Implementation Outline

Our prototype implementation is separated into two parts the majority of
the functionality is coded in C (in isdown.c), utilising the fork and signal
features of UNTX, and a thin layer coded in the concurrent LP language (in
download/4). We require that the language be able to spawn a UNTX process

www.manaraa.com

Page

T Request

Stop Result

download/4

L — 2
/

fork achild

touch /
try to open

StopFile

check_stop download

e
Souaty "0

kill

Figure 4: Tmplementation Details.

and incrementally read its output as an input stream. The implementation is
illustrated in Figure 4.
isdown.c 18 called with two command line arguments:

isdown URL StopFile

isdown forks a child process to download the page at the address URL (at the
moment, the code only supports the HT'TP GET protocol). Meanwhile, the
parent process periodically attempts to open the file called StopFile. If it ever
succeeds, then the child process is killed, thereby stopping the download.

During this time, if the child finishes 1ts retrieval, 1t terminates after sending
a signal to the parent. This signal informs the parent to stop trying to open
StopFile, and to exit.

As the child incrementally receives the Web page, the text 1s directed to stan-
dard output. An error will cause the retrieval to stop, and the child passes on the
error by placing the string "#### error-no" onto standard output (error-no
will have a value between 1 and 6). We assume the string is sufficiently unique to
distinguish it from the preceding Web page text. If the download 1s successfully
completed then "#### 0" is appended to the output.

The complete code for isdown.c appears in the Appendix.

The concurrent ILP part of the implementation begins with download/4:

mode download(?, =, ~, 7).
download(req(get,URL), Text, Result, Stop) :-—
make_fnm(Fnm),
isd(URL, Fnm, Text, Result),
set_stop(Stop, Result, Fnm).

Tt calls make fnm/1 to create a unique filename, which is used by isd/4 and
set_stop/3 as the name of the stop file. isd/4 invokes isdown.c and reads
its output incrementally, while set_stop/3 waits for either the Stop or Result
variables to be bound.

Details of isd/4:

www.manaraa.com

mode isd(?, ?, ~, 7).

isd(URL, StopFile, Text, Result) :-
concat_atom([’isdown ’, URL, " ’, StopFile], Cmd),
open(pipe(Cmd), read, Str),
get0(Str, Ch),
get_chars(Str, Ch, Download),
get_result(Download, Text, Result).

mode get_chars(?, ?, 7).
get_chars(_, -1, []1).
get_chars(Str, Ch, [Ch|D1ld]) :-
Ch \== -1
get0(Str, NCh),
get_chars(Str, NCh, D1d).

mode get_result(?, =, 7).
get_result([35,35,35,35,32,Num|_], [], Result) :-
ResNo is Num-48, % 35 = *#’; 48 = °0’

num_mesg(ResNo, Result).
get_result([Ch|D1d], [Ch|Text], Result) :-—

Ch \== 35

get_result(Dld, Text, Result).

mode num_mesg(?, 7).

num_mesg(0, ok).

num_mesg(1, err(socket)).
num_mesg(2, err(dns)).

num_mesg(3, err(connect)).
num_mesg(4, err(bad_url)).
num_mesg(5, err(stopped)).
num_mesg(6, err(connection_lost)).

isd/4 builds the isdown command string with the built-in concat_atom/2 and
invokes it as a process using open/3. Unfortunately, this latter feature is not
available in any concurrent I.P language we examined, and so we were forced to
test, this code in SWI-Prolog, version 2.1.0 [14].

get_chars/3 incrementally reads in isdown’s output and passes it to
get_result/3 which pulls off the terminating result value and converts it to a
more informative Result term.

set_stop/3 is:

mode set_stop(?, 7, 7).

set_stop(_, ok, _).

set_stop(_, err(), _).

set_stop(stop, _, StopFile) :-—
concat_atom([’touch ’, StopFile], Cmd),
shell(Cmd).

set_stop/3 suspends until its first or second argument is bound. Tf its first
argument, is bound (which is the Stop variable) then it creates the stop file. Tf
its second argument is bound (which is the Result variable from isd/4) then
isd/4 has finished and set_stop/3 should also terminate.

www.manaraa.com

4 Modelling Web Interactions

We consider how download/4 can be used to build various Web interaction
behaviours.

The AND-parallel download of two pages is:

?- download(req(get, ’http://www.cs.ait.ac.th/"ad’), T1, R1, _),
download(req(get, ’http://www.cs.mu.oz.au/ "swloke’), T2, R2, _).

Often 1t 1s useful to specify a download that tries several alternative sites
for example when searching). A predicate for OR-parallel search is:
p g). Ap p

mode or_get(?, 7).
or_get([URL|Ds], T) :-

download(req(get,URL), Text, ok, _) : T=Text.
or_get([_|Ds], T) :-

or_get(Ds, Text) : T=Text.

or_get/2 uses an important feature of Parlog the deep guard, which is a guard
containing user-defined predicates. or_get/2’s behaviour is to call download/4
in OR-parallel for each URL. When any one of the guarded downloads is suc-
cessful then the other guard evaluations will be terminated automatically. This
coding technique can be rephrased using only AND-parallelism, which is neces-
sary for languages with only flat guards.

An example call to or_get/2 to try downloading Andrew Davison’s page
from two different sites:

?- or_get([’http://fivedots.coe.psu.ac.th/"ad’,
*http://www.cs.ait.ac.th/"ad’], Text).

Tt is frequently useful to limit the amount of time that a download should
take, especially when the network is very loaded. This mechanism could be used
with predicates like or_get/2 to try alternative URLs if the current download
18 too slow.

A definition for a retrieval predicate with a time-out facility:

mode timeout(?, ?, =, ~, 7).

timeout(_Time, Request, Text, Result, Stop) :-
download(Request, Text, Result, Stop) : true.

timeout(Time, _, _, err(timeout), _) :—
sleep(Time) : true.

Deep guards are again utilised to set up an OR-parallel evaluation, this time
of download/4 and sleep/1 (a built-in which succeeds after suspending for a
specified number of seconds). Tf the time-out expires before download/4 has
finished then download/4 is terminated and Result is bound to err(timeout).

Web users do not give up easily, and will often reattempt a download if it fails
the first time (or even several times). repeat/b repeatedly calls download/4
up to a specified number of times until the retrieval is successful or the limit is
reached.

www.manaraa.com

mode repeat(?, ?, =, ~, 7).
repeat(Limit, Request, Text, Result, Stop) :-
repeat1(0, Limit, Request, Text, Result, Stop).

mode repeati(?, 7, 7, ~, ~, 7).
repeat1(Limit, Limit, _, _, err(limit), _).
repeatl(Count, Limit, Request, Text, ok, Stop) :-—
Count < Limit,
download(Request, Text, ok, Stop) : true;
repeatl(Count, Limit, Request, Text, Result, Stop) :-—
Count < Limit
Countl is Count + 1,

repeatl1(Countl, Limit, Request, Text, Result, Stop).

repeat1/6 uses the sequential-OR. operator (‘;) between its second and third
clauses so that the download is tried first. If nothing is obtained then the third

clause recurses after incrementing the count argument.

Another Web problem is dealing with slow downloads: a common behaviour

s to ‘give up’ on a retrieval when its arrival rate drops below some acceptable

value, and then perhaps switch to another site.

rate/5 monitors the arrival rate for a page and terminates the download if

the speed drops below the specified minimum.

mode rate(?, 7, =, =, 7).

rate(Minimum, Request, Text, Result, Stop) :-
download(Request, Text, R1, S1),
time(Time),
rate_mon(Text, Minimum, Time, O, R2, S2),
combine(R1, S1, R2, S2, Result, Stop).

mode rate_mon(?, ?, ?, ?, ~, 7).
rate_mon([], _, _, _, done, _). % download done

rate_mon(_, _, _, _, stopped, stop). 7% download stopped

rate_mon(Text, Min, Time, Len, R, S) :—
calc_len(Text, Textl, Len, Lenl),
test_len(Textl, Min, Time, Lenl, R, S).

mode calc_len(?, =, 7, 7).
calc_len([1, [1, Len, Len). % end of text

calc_len(Var, Var, Len, Len) :- % current end of text

var(Var) : true.

calc_len([ChlChs], Var, Len, Len2) :-—
Lenl is Len + 1,
calc_len(Chs, Var, Lenl, Len2).

mode test_len(?, ?, 7, ?, ~, 7).

test_len(_Text, Min, Time, Len, err(too_slow), _) :—
time(NowTime),
Rate is Len/(NowTime-Time),
Rate < Min : true; % rate too slow

www.manaraa.com

test_len(Text, Min, Time, Len, R, S) :-—
rate_mon(Text, Min, Time, Len, R, S).

mode combine(R1?, S1~, R2?, S2°, Result~, Stop?).

combine(_, S1, err(too_slow), _, Result, _) :-— % rate error
S1 = stop, Result = err(too_slow).

combine(R1, _, _, S2, Result, _) :- % download result
ground (R1)
S2 = stop, Result = R1.

combine(_, S1, _, S2, Result, stop) :- % stop from outside

S1 = stop, S2 = stop, Result = err(stopped).

rate mon/6’s usual behaviour 18 to calculate the arrival rate by calling
calclen/4 to get the length of the text already downloaded, and then use
test len/6 to check if the rate has dropped below the minimum permitted.
However, rate mon/6 can also be terminated when the download has finished
or been stopped.

calc_len/4 uses the fact that the retrieved text is represented as a partially
instantiated list ending in a variable or [1. Tt recurses down to the current end
of the list counting the characters it sees. This number is added to the previous
length of the text to obtain the current length.

combine/6 is a standard predicate in concurrent L.P programs for monitoring
the Stop and Result parameters of two processes (download/4 and rate mon/6
in this case). Tf one of the processes produces a result then combine/6 stops the
other process. Tt also passes the final result to rate/5 inside its Result output,
and monitors rate/5’s Stop variable.

The underlying approach in our examples was to develop a new predicate
for each kind of interaction: timeout/5 for time-outs, repeat/5 for repeated
retries, rate/5 for data transfer rate measurement, and so on.

Tt is easy to combine these interaction behaviours. For example, a predicate
employing rate monitoring and a time-out would essentially be the same as
rate/5 but with a call to timeout/5 instead of download/4.

5 Concurrent LogicWeb

As mentioned above, LogicWeb views the Web as a collection of logic programs
which can be composed together using operators such as union, intersection,
and encapsulation [10]. This programming style makes it much easier to imple-
ment structured data representations on top of the Web, including light-weight
databases and concept nets [7, 9]. The Web link mechanism can be augmented
with logical relationships, which are useful when programming search engines
or Web guided tours [6, 8].

One of the key components of LogicWeb 18 the context operator:
lw(RequestMethod, URL)#>Goal

This executes Goal against the logic program specified by the Web request
method and the URI.. Low-level issues such as page retrieval, parsing, and
conversion into logic program format are hidden. Tn addition, if the program

10

www.manaraa.com

required by Goal is already present, on the client-side (because it was previously
downloaded) then it is not retrieved again.

This abstraction away from network issues, such as latency, bandwidth, and
connection failure, is very useful for many kinds of program. However, 1t also
makes some types of code harder to write. For example, search agents would
often like to be able to identify why a page cannot be retrieved.

A #> goal can fail, so it 1s possible to distinguish download failure from goal
failure by executing:

lw(RequestMethod, URL)#>true.

but this still does not supply any information about the kind of download failure,
such as a bad URIL or connection loss.

A more informative context operator can be implemented using download/4.
The #> call becomes:

lw(RequestMethod?, URL?, Store?, NewStore~, Result”)#>Goal

Store is the LogicWeb program store which holds the programs which have
been previously obtained. Tf a further download is required for the evaluation
of Goal then the store will be extended with the new program, and output in
NewStore. If no download is necessary, or the retrieval fails, then NewStore
takes on Store’s value. Result returns download/4’s result information.

The reason for the Store/NewStore pair is the presence of AND-parallelism,
which means that two (or more) #> goals could be evaluated concurrently, with
the resulting problem of reconciling concurrent changes to the program store.
We have chosen to sequentialise the updates by requiring the store to be passed
explicitly between #> goals. Therefore, the parallel execution of goals in two
different, programs (pages) would be:

?- lu(get,’http://www.cs.ait.ac.th/"ad’,
St, St1, R1)#>interests(AIls),
lw(get, http://www.cs.mu.oz.au/ " swloke’,
St1, St2, R2)#>interests(SIs),
intersect(AIs, SIs, Is).

The query collects the interests from the two programs and calculates their
intersection. Since the two pages are independent, the two downloads could
be carried out in AND-parallel, as the ‘" conjunction specifies. However, the
sharing of the program store between the #> goals sequentialises them.

The implementation of the concurrent context operator:

mode #>(?7, 7).

lw(Method, URL, St, NSt, Result)#>Goal :-—
download_prog(req(Method,URL), St, NSt, Result),
try_goal(Result, NSt, lw(Method,URL), Goal).

mode download_prog(?, 7, ~, ~).
download_prog(Request, St, St, ok) :-

member (prog(Request,_), St) : true; % already in store
download_prog(Request, St, NSt, Result) :-—

download(Request, Text, Result, _Stop), % stop not used

11

www.manaraa.com

extract_prog(Result, Request, Text, St, NSt).

mode extract_prog(?, 7, 7, 7, 7).

extract_prog(err(_), _, _, St, St).

extract_prog(ok, Request, Text, St, [prog(Request,Clauses)|St]) :-
make_prog(Text, Clauses). % convert text into LP clauses

mode try_goal(?, 7, 7, 7).

try_goal(err(_), _, _, _).

try_goal(ok, St, ProgID, Goal) :-—
demo(St, ProgID, Goal).

The #> predicate tries to download the program required for Goal by using
download prog/4. If the retrieval is error-free then the goal 1s evaluated by
demo/3, otherwise the goal is ignored.

download prog/4 starts by checking if the store already contains the neces-
sary program by searching for the term prog(Request,_). If it is present then
a new download is unnecessary, otherwise one is carried out. If the retrieval
s successful, extract prog/5 converts the resulting text into logic program
clauses and stores them.

One benefit of coding #> explicitly 1s that it makes the design decisions
clearer. For instance, if a program has already been downloaded then it is never
retrieved again, and there is no way of stopping a #> download. Of course, these
decisions can be modified.

5.1 Parallel Search

The utilisation of the LogicWeb model in a concurrent LP framework means
that parallel algorithms can be used to search and analyse Web pages.

In the following example, we assume that the logic program generated for a
Web page contains the fact 1inks/1, which holds a list of all the link anchor
and URL pairs on the page:

links([link(Anchori,URL1), ...]1).

This differs from the sequential LogicWeb translation where each link anchor
and URIL pair is stored in its own fact. A list representation permits parallel
search to be programmed more directly.

search pages/4 uses deep guards to search in OR-parallel starting from a
given URL until a page is found which contains the specified phrase. A typical
query would be:

?- search_pages(’http://www.cs.ait.ac.th/"ad’,
Store, 'Parlog'", URL).

Store holds the LogicWeb program store.
search pages/4 is defined as:

mode search_pages(?, 7, 7, 7).

search_pages(URL, Store, Phrase, Address) :-
relevant_page(URL, Store, Phrase) : Address = URL.

search_pages(URL, Store, Phrase, Address) :-

12

www.manaraa.com

lw(get, URL, Store, NStore, ok)#>links(Ls),
visit_links(Ls, NStore, Phrase, A) : Address = A.

mode relevant_page(?, ?, 7).

relevant_page(URL, St, Phrase) :-—
lw(get, URL, St, _, ok)#>h_text(Text),
contains (Text, Phrase).

mode visit_links(?, ?, ?, 7).
visit_links([1link(_,URL)|_], St, Phrase, Addr) :-—
search_pages(URL, St, Phrase, A) : Addr = A.

visit_links([_ILs], St, Phrase, Addr) :-
visit_links(Ls, St, Phrase, A) : Addr = 4.

relevant page/3 uses a call to h_text/1, a predicate generated by Log-
icWeb for every downloaded page to hold the text of that page. relevant _page/3
also uses the built-in contains/2 to check if Phrase is present in the page’s
text.

One useful feature of search_pages/4 is that the updates to the program
store are not retained at the end of the search. Only the URL of the matching
page is returned.

A poor aspect of search pages/4 and its subsidiary predicates 1s the lack
of loop checking 1t is quite likely that many of the OR-parallel searches will
revisit pages already seen. This could be avoided by passing around a list of
visited URLs but this would linearise the code to a large degree.

5.2 Atomic Test-and-Set

The use of explicit store variables in the context operator cannot be avoided in
Parlog, but in more powerful concurrent I.P languages there is an alternative.
Tf the language possesses an atomic test-and-set primitive (e.g. as in FCP(],:)
and ce([,]) [13, 12]) then the store (and its updates) can be hidden from the
user.

The basic coding change is to represent the store as a partially instantiated
list, ending in a variable. When a new program is added to the store, the
variable is atomically unified with a list holding the program term and a new
variable.

This technique requires a change to extract_prog/5 which we previously
used to update the store. Tn FCP(],:) notation, it becomes:

extract_prog(err(_), _, _, St).

extract_prog(ok, Request, Text, St) <-
make_prog(Text, Clauses),
add_prog(prog(Request,Clauses), St).

add_prog(Prog, Store) <-

true : Store = [Progl|_] | true. % atomic test—and-set
add_prog(Prog, Store) <-

Store = [_|Storel] | add_prog(Prog, Storel).

add_prog/2 tries to add prog(Request,Clauses) to the list, but will be unable

to do so until it reaches its variable end. The actual assignment 1s achieved in

13

www.manaraa.com

the first clause of add_prog/2. Tt cannot be interleaved with another update
and so there is no danger of the modification being corrupted. Consequently,
it 18 unnecessary to return the modified program store as an extra argument of
extract prog or #>. Indeed, the program store can be completely hidden from
the programmer, as in the sequential version of LogicWeb. The resulting #>
predicate is:

lw(RequesthIethod, URL, Result)#>Goal

If two #> goals try to update the store at the same time, one will update it
before the other, but the order is undefined.

5.3 Composition Operators

Hiding the program store simplifies LogicWeb goals involving composition oper-
ators. For instance, the following goal is written in a similar way to its sequential
counterpart:

(lw(get, URL1, _) + lu(get, URL2, _))#>Goal

+ 18 LogicWeb union which forms the set-theoretic union of its arguments. Par-
allelism can be exploited within the expression on the left hand side of #>: the
pages URL1 and URL2 are downloaded concurrently.

5.4 Web Interactions in LogicWeb Goals

If the underlying concurrent language supports other behaviours, as typified
by timeout/5 and rate/5, then these could also be made accessible at the
LogicWeb level.

One way of doing that is to extend the 1w () term to include a user-specified
list. of interaction parameters. These would be employed at the lower-level to
set up and call the necessary predicates.

For example, the following LogicWeb goal sets a time-out value of five sec-
onds, a minimum data transfer rate of 100 KB/s, and permits up to three
retrieval attempts (at five second intervals) for downloading the page:

lw(get, URL, inter([time(5), rate(100), atts(3)], Result))#>Goal

6 Related Work

The research by Cardelli and Davies on service combinators for Web computing
is closely related to our proposal [2]. They describe a concurrent model with
the aim of reproducing human Web browsing behaviour, such as responses to
download failure or slow transmission rates. Their language contains constructs
for retrieving a page as a string, representing time-outs and repeating failed
downloads. Their approach 1s also used in the Web data accessing component
of Webl,, an object-oriented scripting language [5].

There are some important, differences between the service combinator view
of the Web and our approach, the main one being that the combinator lan-
guage contains no representation for the data stream between the client and
server. For example, Cardelli and Davies’ download operator either returns a

14

www.manaraa.com

complete page string or fails. Also their language does not supply a way for the
programmer to access the failure type of a download or to stop a retrieval in
mid-execution (possible with download/4 via the Result and Stop variables).
The consequence of their design decisions is that it is much harder to use com-
binators to build new behaviours based on an examination of the downloading
data stream. For instance, we can implement rate-based monitoring, while the
combinator language must contain it as a predefined operator.

The only concurrent I.P language with explicit support for Web computation
is W-ACE, a constraint-based language which hborrows its parallel features from
ACE [11]. Their paper discusses the use of AND- and OR- parallelism for agent,
search in general terms, but is more concerned with the representation of Web
pages as structured terms.

7 Conclusion

We have described a concurrent I.P-based model of the Web which uses processes
and data streams as an abstraction for Web connectivity. This is very useful for
addressing issues such as latency and recovery from different types of failure.

Our view of the Web can be readily utilised as a building block for more
complex behaviours. In particular, we discussed two designs for a ‘concurrent’
LogicWeb with different context operators.

We outlined the design and implementation of a download/4 predicate which
is the key element of our approach. Tt comprises a fairly simple UNTX-based
component and a thin concurrent LP layer. Unfortunately, we were unable to
find a language that could implement a ‘pipe reading’ function for incrementally
reading the output stream of the UNTX process. We do not believe that adding
such functionality would be onerous. We tested our approach using the pipe
facilities in SWI-Prolog.

References

[1] T. Berners-Tee, R. Fielding, and H. Frystyk, HyperText Transfer Protocol
(HTTP/1.0} Specification, RFC 1945.

[2] T.. Cardelli and R. Davies, Service Combinators for Web Com-
puting, SRC Research Report 148, Digital Systems Research
Center, Palo Alto, California, USA, June, 1997. Available at
ftp://gatekeeper.dec.com/pub/DEC/SRC/research-reports/
abstracts/src-rr-148.html

[3] K.L. Clark and S. Gregory, Parlog: Parallel Programming in Logic, ACM
TOPTAS 8(1), 1986, 1 49.

[4] S. Gregory, Parallel Logic Programming in Parlog, Addison-Wesley, 1987.

[}] T. Kistler and H. Marais, Webl A Programming Lan-
guage for the Web SRC Research Report, Digital Systems Re-
search Center, Palo Alto, California, USA, 1998. Available at
http://wuww.elsevier.nl/cas/tree/store/comnet/free/www7/1832/
com1832.htm .

www.manaraa.com

[6] S-W. TLoke, A. Davison, and T.. Sterling, CiFi: An Intelligent Agent for
Citation Finding on the World Wide Web, PRICAT96: 4th Pacific Rim
Int. Conf. on Artificial Intelligence, Cairns, Australia, August, 1996.

[7] S-W. Loke, A. Davison, and T.. Sterling, Lightweight Deductive Databases
on the World-Wide Web, Proc. of the 1st Workshop on Logic Programming
Tools for Internet Applications, JICSTL.P'96, Bonn, Germany, September,
91 106.

[8] S.W. T.oke and A. Davison, A Logic Programming Approach to Generating
Web-based Guided Tours, PAP’97: hth Int. Conf. and Exhibition on The
Practical Application of Prolog, T.ondon, UK, April, 1997.

[9] S-W. Loke and A. Davison, A Two-level World Wide Web Model with Logic
Programmaing Links, Second Int. Workshop on I.P Tools for Internet Ap-
plications, ICLP’97, Leuven, Belgium, 1997.

[10] S.W. L.oke and A. Davison, LogicWeb: Fnhancing the Web with Logic Pro-
gramming, The Journal of Logic Programming, 36, 1998, 195 240.

[11] E. Pontelli and G. Gupta, W-ACFE: A Logic Language for Intelligent In-
ternet Programming, TOTAT 97, Proc. of the TEEE 9th Int. Conf. on Tools
with AT, 1997, 2 10.

[12] V.A.Saraswat, Concurrent Constraint Programming Languages, Ph.D The-
sis, Carnegie-Mellon Univ. 1988.

[13] E. Shapiro, The Family of Concurrent Logic Programming Languages, ACM
Computing Surveys, Vol. 21, No. 3, September 1989, 413 510.

[14] J. Wielemaker, SWI-Prolog Reference Manual, Dept. of Social Science
Informatics (SWT), Amsterdam, The Netherlands, 1998. Available af
ftp://swi.psy.uva.nl/pub/SWI-Prolog/.

Appendix
A complete listing of isdown.c, the C component of the download/4 predicate.

/* isdown.c */

/* Andrew Davison, Nov. 1998 (ad@cs.ait.ac.th)
Seng Wai Loke (swloke@cs.mu.oz.au)

*/

/* Retrieve the text of a Web page using its URL, but
this is interrupted if the stop-file is found
to exist. The page is output to stdout and is
followed by "#### result-code"

Result codes:
0 : page downloaded okay
: socket creation failure
: DNS lookup error
: connection error
: URL incorrectly formed

O W N =

: downloaded interrupted by user

16

www.manaraa.com

6 : something wrong with input from socket

Usage:
isdown http://www.cs.ait.ac.th/ ad/index.html stopfnm
*/
/* Compilation on Sun0S:
\gcec -o isdown isdown.c -lnsl -lsocket

*/

#include <stdio.h>

#include <string.h>

t#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#tinclude <netdb.h>

#include <unistd.h> /* for read(), write(), close() */
#include <sys/wait.h>

#include <signal.h>

#define SIZE 512 /* max length of a string */

void extract_parts(char url[], char host[], char fnm[]);
int open_socket(char *host);

void send_GET(int sd, char #*fnm);

void show_reply(int sd);

void show_result(int result);

void check_stop(char *stopfile, pid_t pid, int sd);
void child_done(int signo);

int main(int argc, char *argvl[])
{

int ad;

pid_t pid;

char host[SIZE], fnm[SIZE];

signal (STGUSR1, child_done); /* child signals to parent */

if (argec '= 3) {
fprintf(stderr, "Usage: isdown URL StopFile\n'");
exit(1);

}

extract_parts(argv[1], host, fnm);
sd = open_socket (host);

if ((pid = fork()) == 0) { /* child #*/

send_GET(sd, fnm); /* get the page */
show_reply(sd); /* print it to stdout */
close(sd);
kill(getppid(), SIGUSR1); /* tell the parent to exit */
}
else /* parent */
while(1) { /* interrupted by child signal */

check_stop(argv[2], pid, sd); /* stop the child? #*/

17

www.manaraa.com

sleep(1);
}
return 0;

}

void extract_parts(char url[], char host[], char fnm[])
/* url should be of the form:
http://host [/fnm]
host and fnm are extracted from url; fnm may be empty

*/
{
int 1 = 0, j, k;
while ((url[i] !'= °\0’) && (url[i] !'= ’/’))
it+

if (url[i]l == °\0’) {
fprintf(stderr, "Illegal URL format\n'");

show_result(4); /* URL incorrectly formed error */
exit(1);

¥

i=1i+ 2; /* skip both ’/’s */

j=0;

while ((urllil != °\0’) && (url[il '= >/’))
host[j++] = url[i++]; /* build host */

host[j1 = °\0’;

if (url[i] == °\0’) /* no file part */
fnm[0] = ’\0’;
else {
it /* skip the ’/’ */
k = 0;
while (url[il '= ’\0’)
fom[k++] = url[i++]; /% build fnm */
fom[k] = °\0’;
¥

}

int open_socket(char *host)
/* Create a socket. Assign host’s details to name.

Create a stream using name, and connect the socket to it.
*/
{

atruct sockaddr_in name;
struct hostent *hptr;
int ad;

if ((sd = socket (AF_INET, SOCK_STREAM, 0)) < 0) {
perror ("socket");
show_result(1); /* socket creation error */

exit(1);
¥

/* initialise the name struct to all zeros */

18

www.manharaa.com

memset (&name, 0, sizeof(name));

name.sin_family = AF_INET;
name.sin_port = htons(80); /* host is a HTTP server */

if ((hptr = gethostbyname (host)) == NULL) {
perror (""gethostbyname") ;
show_result(2); /* DNS lookup error */
exit(1);

}

/* copy the IP address of host into name */
memcpy(&name.sin_addr.s_addr, hptr->h_addr, hptr—>h_1ength);

fprintf(stderr, "Trying to contact %s...\n'", host);
if (connect(sd, (struct sockaddr *) &name,
sizeof (name)) < 0) {
close(sd);
perror("connect') ;
show_result(3); /* connection error */
exit(1);
¥

return sd;

void send_GET(int sd, char #*fnm)
/* Send a GET request for fnm to the server */
{

char request[SIZE];

fprintf(stderr, "Sending a GET request...\n");
sprintf (request, "GET /%s HTTP/1.0\n\n", fnm);
write(sd, request, sizeof (request));

void show_reply(int sd)
/* Print the reply to the GET request #*/
{

char buf[SIZE];

int res;

fprintf(stderr, "Waiting for a response\n');
while ((res = read(sd, buf, SIZE)) > 0) {
write(1, buf, res); /* write to stdout */
/* sleep(1); */ /* testing —- to slow download */
¥
if (res < 0) /* read error */
res = 6; /* socket read error result code */
show_result (res);

void show_result(int result)
/* Finish the output with the result code details #*/

19

www.manaraa.com

char buf[SIZE];

fprintf (stderr, "Download result: %d\n", result);
sprintf (buf, "\n####t %d\n", result);

write(1, buf, strlen(buf));

void check_stop(char *stopfile, pid_t pid, int sd)
/* If stopfile exists (i.e. can be opened) then kill
the child which is downloading the Web page.
*/
{
FILE *fp;
if ((fp = fopen(stopfile, "r'")) != NULL) {
fprintf (stderr, "stop file detected\n');
kill(pid, SIGKILL); /* kill child process #*/
close(sd);
fclose(fp);
remove (stopfile);
show_result(5); /* download interruption code */
exit(1);

void child_done(int signo)
/* Executed when the child sends a SIGUSR1 signal to the
parent to inform it that the page downloading has

finished. This allows the parent to terminate as well.

*/

{
fprintf(stderr, "Child has finished\n'");
exit (0);

}

20

www.manharaa.com

